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DIFFRACTION OF A PLANE WAVE BY AN INFINITE ELASTIC PLATE STIFFENED 
BY A DOUBLY PERIODIC SET OF RIGID RIBS* 

B. P. BELINSKII 

Thediffractionof a plane wave by an infinite elastic plate stiffened by a 
doubly periodic set of rigid ribs of moderate wave dimensions is studied. 
The problem is reduced to an infinite quasiregular system of linear 
algebraic equations, and their solution describes the amplitudes of the 
waves propagating from the plate into the fluid. 

The effect of a periodic set of parallel ribs, which stiffen an elastic plate, on its 
acoustic properties, has been studied in reasonable detail. An exact solution of the problem 
of the diffraction of a plane wave by such a plate is given in /l/ where the frequency rela- 
tionships of the reflection and transmission coefficients of a plane wave were also studied 
and simple approximate formulas were obtained for the limiting cases. 

1. Me,will investigate the diffraction of a plane pressure wave 

pO = exp (ik ((z cos ‘pO + ysin q),J ain 9, - z GOB 0,)) 
incident on an infinite plate (-W<Z,Y <OQ,Z = 0) stiffened by a doubly periodic set of 
rigid ribs {-~<s<~,~-rnb;--<<~~,~=~na;--<n~m<~). The pressure p(;c,y,z) 
in the medium satisfies the Helmholtz equation with the boundary condition at the plate given 

bY 
D (A;- k,') E (I, Y) + [PI (z = 0) = 0 il.11 

(z#w, ~fmb) 

ko =s @“OFYD )I/* 

Here D is the cylindrical rigidity of the plate, E (x. 8) is its displacement, connected with 
the pressure by the adhesion condition E(z, ~)=p~(r,y, O)/@,d), p. is the density of the 
liquid, A0 is the two-dimensional Laplace operator, k, is the wave number of the flexural 
waves in the plate, p0 is the plate density and H" is its thickness. The symbol [cpl (z = 0) 
denotes the jump in the value of the function q at Z= 0. The harmonic dependence of the 
processes on time exp(-iwt) is omitted. 

We will first assume that fluid is present on one side of the plate only (z> 0). The 
case of two-sided contact can be studied in exactly the same manner. We shall therefore only 
refer to it at the stage of numerical analysis and interpretation of the results. The bound- 
ary contact conditions (BCC) appear when the bending and torsional oscillations of the ribs 
and their rigid coupling to the plate carrying them are taken into account /2/ 

-_D [h,, + (2 - u) &,I (3 = nQ) = --c&t (1.2) 
D [k,; + a&,,] (5 - na) = --i@z& 

(z = M, Y z mbl 

-D [E,,, + (2 - 17) 5,,,1 (Y = mb) = --G& 

D [g,, + O&J (y = mbl = --io&& (Y = mb, 2 # nal 

Here (J is Poisson's ratio of the plate, and the operators &,Z, (p= i,2) are the force and 
momentum impedances of the ribs respectively. 

*Prikl.Matem.Mekhan..47,6,962-971,1983 
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Unlike the well-known boundary contact problems /S-5/, the three-dimensional boundary 
value problem described here can be called a second-order boundary contact problem since, in 
addition to the boundary condition (1.1) and BCC (l-2), we must also formulate the BCC at the 
points of intersection of the ribs (z= na,y= mb). Below we shall describe the class of 
admissible second-order BCC. The specific analysis will be performed for two parameters 

5=5,=5,=0 (1.3) 

F=M1=Mz=O (1.1) 

(F = [&Z&xxx] (x = na) f t-W&yyl (I/ = W 
M 1 = -lE,Z&,I (y = mb), Mz = -&z&xx] (5 = 4) 

In the first case the nodes are assumed to be rigidly fixed, and free in the second case. Here 
F denotes the concentrated force appearing at the node,M,and ll/I, are concentrated moments, 
and the quantities E,, I,,@ = 1, 2) d enote Young's modulus and the moments of inertia of the 
corresponding ribs. Finally, the diffuse field q= I;- p0 must satisfy the principle of 
limit absorption. An analogous problem was first studied in /6/, without offering a mathe- 
matical justification for the numerical algorithm employed , and the problem of second-order 
BCC was not formulated. We shall show that this implies that it was case (1.4) of free nodes 
that was studied. 

2. In view of the fact that the incident wave is almost periodic, we shall seek the 
diffuse field in the form of an almost-periodic function 

q (2-f na, y+ mb, z) = q (2, Y, 2) exp (isa + imp) 

a = ka cos ‘p. sin Bo, p = kb sin q. sin e. 

(2.1) 

and consider the boundary value problem in the fundamental period Qo-r (0 <s < a, 0 < y < b, 
0 <z< m). To justify the scheme, which is based on the application of the principle of 
limiting absorption, we must establish the uniqueness of the solution of the homogeneous 
boundary value problem (p,=O) when there is absorption in the medium (Imk>O). The solu- 
tion is sought in the class of functions with a finite norm in &(Q,). We shall make use of 
the identity following from Green's second formula for the Laplace operator 

Here S,denotes a certain translation of the fundamental period of the plate, such that only 
one node of the mesh (0,O) lies within it, and the bar denotes a complex conjugate. In trans- 
forming the right-hand side describing the energy flux across the boundary ag , we use the 
Green's second formula for a plate with ribs /7/. As a result we obtain the following indent- 
ity: 

We shall call the second-order BCC admissible if the right-hand side of this identity is 
non-negative. For example, BCC of the form (F, M1,M,)l = Z(& &, E,)1 (t denotes transposition) 
with the impedance matrix 2, the eigenvalues of which have non-negative imaginary Parts, will 
be admissible. We can consider the BCC (1.3) and (1.4) as special cases as z+ x) and Z-+0 
respectively. It is obvious that q -0 for the admissible BCC, and this implies that the 
solution is unique. 

Henceforth, it will be convenient to represent the diffuse field by a double Fourier 
series with unknown amplitudes A,,,,,, 

(A,= E..p,r(m= 2nm f fi 
7 , ynm = (hn2 j pm* - kZ)‘/., Rey,.,>O) 

Here and henceforth the fact that there are no limits on the summation signs means that the 
summation is carried out over all integer values of II and m. When there is no absorption 

(Im k = 0) the energy identity has the form 

(2.4) 

and the summation need only to be carried out over the waves propagating upwards for which 

A,,% + )A,,,~< k2. Under the conditions of the homogeneous problem the amplitude of these waves 
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will thus be zero. At certain frequencies however, solutions of the homogeneous boundaryvalue 
problem of the wave type (2.3) moving along the construction and decreasing exponentially with 
distance from it, may appear. 

3. To find the diffraction component of the field g we shall separate from the total 
field not only the incident wave, but also the wave pIreflected from the homogeneous plate 

P = p. + IS, + q, p1 = R exp (i bda + By/b + kz co&)) 

R = R_IR+, Rf = (k&sin *B. - k,,‘) ik cos B. f V, v = pod/D 

Following the accepted methods of solving boundary contact problems, we shall rewrite the 
boundary condition (1.1) treating it as inhomogeneous 

D (L? - &‘)5 (xv Y) + q (5, Y, 0) = 

4 &'""@(I - na)B,(y) + W(z- na)C,(y)) + 
n 

(3.11 

1 

T c ?i~l~B (6 ( y - mb) B* (x) + 6’ (y - mb) c* (5)) 
111 

(-ca<x,y <m) 

Here and henceforth the symbol n or m appearing under the summation sign will denote summa- 
tion over all integer values of nor m respectively. The unknown functions B1, BI, C,,C, are 
analogs of the boundary contact constants appearing in plane problems of acoustics /3-5/. 
Substituting into (3.1) the field g in the form of the series (2.3) and using the condition 
of adhesion, we obtain 

A = (PI, + i pdh + Pzm + hhm)~L, m (3.2) 

L. .“,“= ((A,2 + urns)” - kc,‘) ~nm - v 

Here PI,,. Qla7 Ftm, Pzm are the Fourier coefficients of the functions B,(s),C,(z), B, (y), C, (y) 
respectively. The displacement field has the form 

(3.3) 

The continuity of displacements and angles of rotation of the plate when passing across 
the ribs is ensured by requiring that the following asymptotic estimates hold for the unknown 
Plnr Qln9 Pzmt qgm: 

Pin. pnm = 0 (I), 41n = 0 U/n), qam = 0 (Urn) h m + C-J 
It can be confirmed that the above estimates guarantee the finiteness of the potential energy 
of a single period of the plate. The BCC (1.2) contain the discontinuities of high-order 
derivatives of the displacement field E. It can be shown that a discontinuity in any deriva- 
tive of up to the third order in 5 is the same as the discontinuity for the field 51 derived 
from the field E by discarding from the symbol of the boundary operator L,,, its dynamic part 
(v + 0) 

(3.4) 

Moreover, since the discontinuities in the derivatives are connected with the non-uniform 
convergence of series (3.4), it follows that we can delete from it any finite number of terms. 

Below we shall find the following identity useful, the validity of which can be confirmed 
using the Parseval equation: 

(3.5) 

The identity enables us to confine ourselves to terms with n = 0 when computing the necessary 
jumps in the derivatives on the line z = 0. Finally we have, at y#O , 

[Lx1 (5 = 0) = & C qkn exp (bd) 
m 

[Exxxl (5 = 0) = & C ~2~ exp (bd) 
m 

The BCC (1.2) are formulated outside the nodes (x = na, y = mb). At the nodes we must take 
into account the concentrated reactions, and this can be done by introducing into (1.2) delta 

(3.6) 
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functions with unknown multipliers C, (1 Q S < 4). Let us write the first two transformed 
equations (1.2) 

- D [E,,] (z = na) + + c 6 (v - mb) exp (is@) = (3.7) 

- iOZll(E + 5,) m 

D [Lx] (z = na) - % x 6 (y - mb) exp (in@) = 

-h&(f,+f,,) ‘;z=nk-m<y<m) 

E+ = ik co9 80 ~"xP(+~+B+)) 

Here E, is the plate displacement corresponding to the geometrical part of the field. Explicit 
expressions for the rib impedances parallel to the y-axis /2/ have the form 

-ii0 II= Z Elllai/ag- p,b,R&, - ioZ,,- --rba~ray~ -plrl~z 

From now on PI, bl,X1 will denote the density, height and thickness of the ribs, andKland I, 
their torsional rigidity and the moment of inertia of the cross section. The corresponding 
quantities for the ribs parallel to the x-axis will be given the subscript 2. 

Let us introduce the symbols for the impedance operators, i.e. their Fourier transforms 
normalized to the rigidity of the plate 

P,-VU.&'- p,bJl,@*)/(bD), W,, - (KG,,’ - pJ,~‘)W’) (3.8) 

51 = (EJ,cL~ - P,b,H,eMsLV. W,, - 

%l)ln* - PJ,OZ) 1 (&I 

Substituting into BCC (3.7) the series for the displacements (3.3) and taking into account 
the expressions for the jumps (3.6) , we arrive at the following system of linear algebraic 
equations: 

Pill + %I (Z PnmPzm + i&Z pnm4tm + JnOPln f J,‘A = (3.9) 

- Pl0dsR + C, 

Qln - WI, (z PAUPER + ilin z hA=whn + J,‘ph + J,%hj = 

Wl0lCLod6R + C4 

PM + Qz, (Z PnmPln + bh~ Pm&n + LOP%n -t G&?h) = 

- S&t,d&+’ + Cl 

4h - Wfm (T fhh& -I- 4h z Pnm%ql, + ImlPzm -t- ImzhJ= 

W&o d6,,,’ + Ca 

(pn* = Yn. mlL*. m, d=ab(R-~)ikcosOO,-w<nn,m<~) 

(ImS= 7 pnm WJ, Jn‘=~pnm(i~)l;s= 0, 1, 2) 

where the constants C, are found from the BCC (1.3) or (1.4). We shall deal with the case of 
damped nodes only. Let us divide the first equation of (3.9) by Qr,, and carry out the summa- 
tion over all n. We obtain 

z PlnI% f S = cs z 114” 

(S = ; JTx”Pl?l -I- ? J:‘q,. + z IRP,” + z I,lYZ” -+ d I 

At the same time, the condition of clamping the node g (0,O) + &(O,O)= 0 and representation 
(3.3) together imply that S =0, and as a result we obtain C,. The final system of linear 
algebraic equations takes the form 

u,pl i o~nV~mpm-~T~~~~=~nO (-m <n<m) (3.10) 
m 

where 

%I + J,” J,’ PM &p,, 
- J,’ T:, - J,z 

U,= 
- &p”?l LkhP*?l 

Pnn hwnn %I -I- Ino I*’ 
- &p,, %$nP,, --la %?I- ITI1 
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4. Next we shall 
ted with a square mesh 

(n > 0) 

Here and below a prime 

study the problems of normal incidence of a plane wave on a plate fit- 
of identical ribs (b = a,cos8, = 1). System (3.10) then takes the form 

(4.1) 

u,,= T1a ‘JO 
n I- EnPnm en=2 - 6," 

on the summation sign denotes that there is no term with m-n. The 
complete pressure field is expressed by the soluition of the system p,, 

P=~xP(- iJ4 -I Rev (W- 4 ~~~(p,,+ p,) x exp(i(h,x + h,,,y)-~~~z) 

In particular, the expression for the reflection coefficient of the principal wave is 

(4.2) 

(4.3) 

Similar arguments for the case of free nodes yield the following system of equations: 

unpm + s; e,,,~nm ~lrn = - 6,’ (n > 0) (4.4) 

which agrees with the system from /6/. This suggests that the arguments used in that paper 
imply indirectly the use of BCC (1.4). 

Let us use (4.4) to see whether the reduction method can be applied to infinite systems. 
We divide every equation by U, aa estimate the sum of s,moduli of the elements of the n-th 
row of the resulting matrix. Remembering that pm,,, and u,are positive, we find for large 
numbers that 

The asymptotic of J,,‘with respect to the subscript can be obtained by comparing this series 
with its value at zero frequency 0. The latter series can be summed explicitly to yield 

JR=&(&)1(1+0(1)), u,=J$;O(n-6) 

Taking into account the obvious asymptotic form 

z,,, N c,l(2nnla)4, c0 = aDl(E,I,) 
we obtain 

so that s,<1 for fairly large n. From the well-known theorems on infinite algebraic 
systems /8/ we infer that the reduction method can be used when the free terms are estimated 
using the quantitites KS,,' , where K is any constant. The last estimate is obvious. 

We shall also show that the proof of the applicability of the reduction method given in 
/6/ is based on the hypothesis that the Hilbert-Schmidt norm of the corresponding matrix is 
finite. Incidentally, the double series with the general term I~,,,,,/u,,J~ diverges. We note 
that the present investigation of the infinite system (4.11, (4.4) is similar to that carried 
out in /8, 9/ in connection with the problem of the flexure of a rectangular plate with rigid- 
ly clamped edges. The systemsinquestion become those of /8, 9/ as w-0, provided that the 
impedances &I. ZP?-CW. 

5. Let us investigate the dynamic behaviour, with respect to the parameters of the 
problem, of the reflection coefficientK,_oftheprinciplewave given by (4.3). We will consider 
the case of free nodes, and restrict ourselves first to the diagonal approximationinsystem 
(4.4) , i.e. PI,, = -&,“lu~ . We have 
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(5.1) 

The approximate formula obtained for the reflection coefficient is superficially analogous 
to the formula for a homogeneous plate, differing only in the fact that the wave number k, 
is replaced by a derived quantity x expressing the effect of the stiffeners. Similarly, in 
the problem of a plane wave passing through a plate we have the following expression for the 
reflection coefficient K, and transmission coefficient T of the principal wave: 

K,=&, T=i+=& (5.2) 

and in computing B we should take the symbol for the plate operator in the form 

L n.m = (@n2 + p,*Y - k,‘) yam - 2v 
The approximate formula (5.1) has a simple interpretation. The quantity B is real up to the 
first "cut-off frequency" (ke <2n), andof all the waves shown in the field (2.3), the only 
wave still propagating is the null wave (n = m = 0). Therefore 1 K, 1 = 1 and the only para- 
meter that changes with the frequency is the phase of the reflected wave. Further, with the 
same parameters of the problem we find that when B=oo, x=k, and the plate behaves as a 
homogeneous plate with its acoustic field unaffected by the.ribs. It is clear that this case 
occurs when ti = 2~1.9, where h is the wave number of the flexural waves in the plate-fluid 
system, and s is an integer. When B=O, we have x=>~,K~=l and the plate behaves as 
a perfectly rigid surface. Finally, when B = 2/k,4 we have x = O,K, = -1 and the plate 
becomes perfectly plastic. Similarly, in the problem of wave transmission the value B=O 
results in total reflection, and B = 2/k,’ in total transmission of the incident wave. Thus 
using the approximate formulas (5.1), (5.2) we can describe all characteristic values of the 
reflection and transmission coefficients at the frequencies below the first cut-off frequency. 

At low frequencies we can retain in the expression for B onlythetenn zn, = -aDl(p,b,H,02). 
In this case the formulas for the reflection coefficients will become 

m = alpoH”, m, = a&H, 

The quantities m and 2m,can be regarded as the mass of a single period of the plate and the 
mass of the ribs per period respectively. Formula (5.3) is known as the mass law /l/ for a 
plate with a singly periodic set of ribs. 

In the case of clamped nodes the diagonal approximation cannot be used in (4.11, and 
such simple formulas cannot be obtained. We shall establish that, irrespective of the form of 
BCC, we can write the reflection coefficient of the second kind in the form (5.1) (or (5.2) 
for an appropriatevalue of B) - We shall write (4.1) and (4.4) uniformly as (n-20) 

U’nPm + & vmP1m = - ata (5.4) 

%P,nl 
w,=u,- q 

%I 
y en9 v,,=e, pnm-?- 

( r1 ) 

bl = 1 in the case of clamped nodes and q =O for free nodes). 
We separate in (5.4) the equation with n = 0 and put pm = -pIoX, with the new unknown 

-G (n > 1). For the latterwe have the following infinite system of equations: 

w,X,f r; %7lXn=% (5.5) 
m>,l 

We introduce the solution matrix 1) p,,,,,II for this system, so that 

Then the first equation of system (5.4) yields 

Let us now introduce the effective quantity B,,, for the case of one-sided contact 

between the plate and the liquid 

(5.6) 



Replacing the parameter v by 2v in the symbol 
quantity &for the case of two-sided contact. 
coefficient (4.3) becomes 
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for the plate operator we obtain the effective 
Then the exact expression for the reflection 

(5.7) 

K 
ik<:, 2 

I*=~, x;.=k2-- 
ik?,, - 2v h* 

(5.8) 

for one-sided and two-sided contact respectively. In the case of clamped nodes we have a low- 
frequency asymptotic form 

where En (n > 
the frequency 

When q-0, the system is identical with the system given in /9/. 

1) is the solution of the system of equations with coefficients independent of 

6. Certain energy identities are of use in checking the numerical calculations. Apply- 
ing the formulas of Sect.2 to the total field we obtain, in the same way as (2.41, 

(6.1) 

Here the summation is carried out over the propagating waves represented in the scattered fielc 

pl + 4 = B B snm e=p ii (b + ~4 - hd) 

Let us consider the frequencies below the first cut-off frequency and separate from the 
amplitude so0 the diffraction component r= soo-fi. Then (6.1) can be rewritten in one of 
the following forms: 

I so0 I = I r + R ) = 1, 1 r I2 = -2 Re (Rr) (6.3) 

In the case of two-sided contact between the plate and the liquid, we introduce an addi- 
tional transverse field (2 < 0) 

(6.4) 

and separate the diffraction component t=soo'-- T (T is the transmission coefficient for the 
homogeneous plate) from the amplitude of the principal wave. In this case (6.1) will take 
the form 

22 (I s,,, 1" + 1 hm 1’) Re I/k2 - &,2 - p,,,’ = I/k’ - ho* - pa2 (6.5) 

and identity (6.3) will be replaced by 

(s~~2+~sOO’~2=)r+R~2+~f+T~2=l 

(r(a+(t12=-2Re(Rr+Tt) 
(6.6) 

Relations (6.3) and (6.6) are analogs of the optical theorem for the model in question /lo/. 
As an example of the application of (6.5) we shall obtain an estimate for the amount of 

energy transferred from the incident wave to all other waves. Me write the amplitude so0 in 
complex form: sOo= u + irr whereupon we have soot 5 1 - u - iv and a whole sequence ofobvious 
relationships 

,,~2;,, (I s,, I2 + I sk, I21 Re I/k* - L* - P,,,~ = 

-r//ii - a02 - PLO2 (1 - 1 so0 p - 1 soo’ I’, = 

1/k ?~~*-~~~(2u-2u~-2v*)<+~k~-ho~-~o~ *- 
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Thus the proportion of the energy transferred from the incident wave to all other waves does 
not exceed 0.5. 

Let us now consider a numerical investigation of the dynamics of the reflection coeffic- 
ient K of the principal wave, with respect to the frequency. We used the exact formula (4.3), 
by solving the infinite system (5.4) for a steel plate of thickness HO= 4 cm., with steel 
reinforcing ribs of thickness H,= 3 cm. and height bl=20 cm., spaced a distance II= SO cm., 
for the case of two-sided contact between the plate and water. Fig.1 refers to the free nodes, 
and Fig.2 to the clamped nodes. The relations connecting the modulus of the reflection coef- 
ficient n! = 1~1 and the phase F=argK with the frequency are shown. For comparison, the 
dashed lines depict the same relationship for a hypothetical rib density exceeding that of 
steel by a factor of 10, and the dot-dash lines refer to the homogeneous plate. The initial 
segments of the curves in Fig.1 obey the mass'law (5.3) up to a frequency of approximately 
0.6 kHz. As the frequency increases, the reflection coefficient oscillates about the values 
corresponding to a homogeneous plate, and'narrow transmission zones appear in which the value 
of the reflection coefficient falls sharply. An increase in the mass of the ribs leads to 
reduction in the frequencies at which the reflection coefficients undergo sharp changes; this 
is related to the effective increase in the wave number of the construction. As the spacing 
between the reinforcing ribs increases, the distance separating the curves constructed for 
different rib densities decreases and they tend asymptotically to the curves for a homogeneous 
plate. When f> 3.5 kHz (where one and half wavelengths in the liquid can fit between the 
ribs), the influence of the ribs can be neglected. 

Fig.1 Fig.2 

In the case of clamped nodes (Fig.2) the reflection at low frequencies U<O,4 kHz) is 

almost complete. Below 1.4 kHz the reflection coefficient is independent of the mass of the 
ribs, the latter behaving as if they were infinitely heavy. The reflection coefficientreaches 

values corresponding to a homogeneous plate more slowly in the case of clamped nodes than of 
the free nodes, On the whole, the conditions at the nodes fixed with help of the second-order 
BCC exert a substantial influence on the acoustic properties of the plate, especially at low 
and middle frequencies. 
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